首页> 外文OA文献 >Reduced interface recombination in Cu2ZnSnS4 solar cells with atomic layer deposition Zn1-xSnxO buffer layers
【2h】

Reduced interface recombination in Cu2ZnSnS4 solar cells with atomic layer deposition Zn1-xSnxO buffer layers

机译:具有原子层沉积Zn1-xSnxO缓冲层的Cu2ZnSnS4太阳能电池的界面重组减少

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cu2ZnSnS4 (CZTS) solar cells typically include a CdS buffer layer in between the CZTS and ZnO front contact. For sulfide CZTS, with a bandgap around 1.5 eV, the band alignment between CZTS and CdS is not ideal ("cliff-like"), which enhances interface recombination. In this work, we show how a Zn1-xSnxOy (ZTO) buffer layer can replace CdS, resulting in improved open circuit voltages (V-oc) for CZTS devices. The ZTO is deposited by atomic layer deposition (ALD), with a process previously developed for Cu(In,Ga)Se-2 solar cells. By varying the ALD process temperature, the position of the conduction band minimum of the ZTO is varied in relation to that of CZTS. A ZTO process at 95 degrees C is found to give higher Voc and efficiency as compared with the CdS reference devices. For a ZTO process at 120 degrees C, where the conduction band alignment is expected to be the same as for CdS, the Voc and efficiency is similar to the CdS reference. Further increase in conduction band minimum by lowering the deposition temperature to 80 degrees C shows blocking of forward current and reduced fill factor, consistent with barrier formation at the junction. Temperature-dependent current voltage analysis gives an activation energy for recombination of 1.36 eV for the best ZTO device compared with 0.98 eV for CdS. We argue that the Voc of the best ZTO devices is limited by bulk recombination, in agreement with a room temperature photoluminescence peak at around 1.3 eV for both devices, while the CdS device is limited by interface recombination.
机译:Cu2ZnSnS4(CZTS)太阳能电池通常在CZTS和ZnO前触点之间包含CdS缓冲层。对于具有约1.5 eV的带隙的硫化物CZTS,CZTS和CdS之间的能带排列不理想(“悬崖状”),这会增强界面重组。在这项工作中,我们展示了Zn1-xSnxOy(ZTO)缓冲层如何替代CdS,从而改善了CZTS器件的开路电压(V-oc)。 ZTO通过原子层沉积(ALD)进行沉积,采用先前为Cu(In,Ga)Se-2太阳能电池开发的工艺。通过改变ALD工艺温度,ZTO导带最小值的位置相对于CZTS改变。与CdS参考器件相比,发现在95摄氏度的ZTO工艺可提供更高的Voc和效率。对于120摄氏度下的ZTO工艺(其中导带对准预期与CdS相同),Voc和效率类似于CdS参考。通过将沉积温度降低到80摄氏度进一步提高导带最小值,这表明正向电流受阻,填充系数降低,这与结处的势垒形成相一致。取决于温度的电流电压分析给出的最佳ZTO器件的活化能为1.36 eV,而CdS的活化能为0.98 eV。我们认为,最好的ZTO器件的Voc受本体重组的限制,这与两个器件的室温光致发光峰均在1.3 eV左右一致,而CdS器件则受到界面重组的限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号